

Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 23 Anos - 2020

Prova escrita de conhecimentos específicos de MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS

Instruções gerais

- 1. A prova é constituída por dois grupos de questões obrigatórias.
- 2. A duração da prova é de 2 horas, estando prevista uma tolerância de 30 minutos;
- Só pode utilizar para elaboração das suas respostas e para efetuar os rascunhos as folhas distribuídas pelo docente vigilante, salvo se previsto outro procedimento;
- 4. Não utilize qualquer tipo de corretor. Se necessário risque ou peça uma troca de folha;
- **5.** Não é autorizada a utilização de quaisquer ferramentas de natureza eletrónica (telemóvel, *ipad*, computador portátil, leitores/gravadores digitais de qualquer natureza ou outros não especificados), exceto máquina de calcular para realizar cálculos e obter representações gráficas de funções, devidamente autorizada.
- **6.** Deverá disponibilizar ao docente que está a vigiar a sala, sempre que solicitado, um documento válido de identificação (cartão de cidadão, bilhete de identidade, carta de condução ou passaporte);
- 7. Na última página do teste encontra as cotações de cada questão.

Leiria, 20 de junho de 2020

Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 23 Anos – 2020

Prova de Avaliação de MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS

- Identifique claramente os grupos e as questões a que responde.
- Utilize apenas caneta ou esferográfica de tinta azul ou preta.
- É interdito o uso de "esferográfica lápis" e de corretor.
- \bullet A prova de avaliação tem 10 páginas.
- A prova de avaliação inclui um formulário nas páginas 8 e 9.
- \bullet As ${\bf cotações}$ da prova de avaliação encontram-se na ${\bf página}$ 10.

Grupo I

- As dez questões deste grupo são de escolha múltipla.
- Em cada questão são indicadas quatro alternativas de resposta das quais só uma está correta.
- Escreva na sua folha de respostas apenas a letra correspondente à alternativa que selecionar para responder a cada questão.
- Se apresentar mais do que uma letra ou se esta for ilegível, a sua resposta será
- As respostas incorretas terão cotação nula.
- Não apresente nem cálculos nem justificações.
- 1. Considere em \mathbb{R} , o sistema de equações lineares, nas variáveis $x \in y$, definido por,

$$\begin{cases} px + y = 3 \\ 2x + qy = -3 \end{cases}$$

onde p e q são constantes reais.

Quais os valores de p e q de modo a que o ponto de coordenadas (-2,1) seja uma solução do sistema?

(A)
$$p = -1 \land q = -1.$$

$$(\mathbf{B}) \quad p = -1 \land q = 1.$$

(C)
$$p = 1 \land q = -1$$
.

(D)
$$p = 1 \land q = 1$$
.

2. Considere em \mathbb{R} , a equação polinomial, definida por, 2x(x+1) - (1-x) = 1.

Qual é o seu conjunto solução?

$$(\mathbf{A}) \quad \left\{-2, \frac{1}{2}\right\}.$$

$$(\mathbf{B}) \quad \left\{ \frac{1}{2}, 2 \right\}$$

$$(\mathbf{C}) \quad \left\{ -\frac{1}{2}, 2 \right\}.$$

(B)
$$\left\{\frac{1}{2}, 2\right\}$$
. (C) $\left\{-\frac{1}{2}, 2\right\}$. (D) $\left\{-2, -\frac{1}{2}\right\}$.

3. Considere em \mathbb{R} , os polinómios P e Q, definidos por,

$$P(x) = a(x+b)^{2} + b(x+1)$$

$$Q\left(x\right) = x^2 - 3x$$

onde a e b são constantes reais.

Quais os valores de a e b de modo a que os polinómios P e Q sejam iguais?

(A)
$$a = 1 \land b = 1$$
.

(B)
$$a = -1 \land b = 1.$$

(C)
$$a = 1 \land b = -1.$$

$$(\mathbf{D}) \quad a = -1 \land b = 1.$$

	È um grafo em que as are	estas têm pesos.				
(\mathbf{B})	É um grafo em que existe	e um caminho que liga qualque	r pai	de vértices.		
(\mathbf{C})	É um grafo em que cada	vértice tem grau $n-1$.				
(\mathbf{D})	É um grafo que contém u	ım circuito hamiltoniano.				
5. Consi	dere um grafo G com 7 vér	ctices.				
Sabe-	se que $C = (v_1, v_3, v_2, v_4, v_5)$	(v_6, v_7, v_1) é um caminho em G	! .			
Qual	das afirmações é verdadeira	a?				
(\mathbf{A})	G não é um grafo conexo).				
(\mathbf{B})	${\cal C}$ não está bem definido.					
(\mathbf{C})	C é um circuito hamilton	niano.				
(\mathbf{D})	Nenhuma das afirmações	anteriores está correta.				
a C :					•	, ,
		conjunto de dados tinha o valor		média aritmét	ica, o	la moda,
do mí	nimo, do $1.^{o}$ quartil, da me	ediana, do $3.^o$ quartil e do máxi	mo.		ica, c	la moda,
do mí Qual	nimo, do $1.^{o}$ quartil, da mea medida ou medidas que e	ediana, do 3.º quartil e do máxi escolheria para avaliar a dispers	mo. são d	los dados?		
do mí Qual (A)	nimo, do 1.º quartil, da me a medida ou medidas que e A média aritmética.	ediana, do 3.º quartil e do máxi escolheria para avaliar a dispers (mo. são d (B)	los dados? O mínimo e o		
do mí Qual	nimo, do $1.^{o}$ quartil, da mea medida ou medidas que e	ediana, do 3.º quartil e do máxi escolheria para avaliar a dispers (mo. são d	los dados?		
do mí Qual (A)	nimo, do 1.º quartil, da me a medida ou medidas que e A média aritmética.	ediana, do 3.º quartil e do máxi escolheria para avaliar a dispers (mo. são d (B)	los dados? O mínimo e o		
do mí Qual (A) (C)	nimo, do 1.º quartil, da me a medida ou medidas que e A média aritmética. A média aritmética e a m	ediana, do 3.º quartil e do máxi escolheria para avaliar a dispers (noda.	mo. são d (B) (D)	los dados? O mínimo e o A mediana.	o má:	ximo.
do mí Qual (A) (C) 7. Consi	nimo, do 1.º quartil, da me a medida ou medidas que e A média aritmética. A média aritmética e a me dere que há um conjunto d	ediana, do 3.º quartil e do máxi escolheria para avaliar a dispers (mo. são d (B) (D)	los dados? O mínimo e o A mediana.	o má:	ximo.
do mí Qual (A) (C) 7. Consi	nimo, do 1.º quartil, da me a medida ou medidas que e A média aritmética. A média aritmética e a m	ediana, do 3.º quartil e do máxi escolheria para avaliar a dispers (noda.	mo. são d (B) (D)	los dados? O mínimo e o A mediana.	o má:	ximo.
do mí Qual (A) (C) 7. Consi Sabe-s	nimo, do 1.º quartil, da me a medida ou medidas que e A média aritmética. A média aritmética e a me dere que há um conjunto d	ediana, do 3.º quartil e do máxi escolheria para avaliar a dispers (noda. (mo. são d (B) (D)	los dados? O mínimo e o A mediana.	o má:	ximo.
do mí Qual (A) (C) 7. Consi Sabe-	nimo, do 1.º quartil, da me a medida ou medidas que e A média aritmética. A média aritmética e a m dere que há um conjunto d se que:	ediana, do 3.º quartil e do máxi escolheria para avaliar a dispers (noda. (mo. são d (B) (D)	los dados? O mínimo e o A mediana.	o má:	ximo.
do mí Qual (A) (C) 7. Consi Sabe-s	nimo, do 1.º quartil, da me a medida ou medidas que e A média aritmética. A média aritmética e a medidas que há um conjunto de se que: 15% dos clientes incluem les des dos clientes incluem pão	ediana, do 3.º quartil e do máxi escolheria para avaliar a dispers (noda. (mo. são d (B) (D)	los dados? O mínimo e o A mediana. moço numa pas	o má:	ximo.
do mí Qual (A) (C) 7. Consi Sabe-s • 4 • 9	nimo, do 1.º quartil, da me a medida ou medidas que e A média aritmética. A média aritmética e a medidas que há um conjunto de se que: 15% dos clientes incluem les les dos clientes incluem pace um quarto dos clientes não	ediana, do 3.º quartil e do máxi escolheria para avaliar a dispers noda. (noda. (ele clientes que tomam o pequen elete no seu pedido; o e leite no seu pedido; incluem pão nem leite no seu p	mo. são d (B) (D)	los dados? O mínimo e o A mediana. moço numa pas	o má:	ximo.
do mí Qual (A) (C) 7. Consi Sabe-s • 4 • 9	nimo, do 1.º quartil, da me a medida ou medidas que e A média aritmética. A média aritmética e a medidas que há um conjunto de se que: 15% dos clientes incluem les les dos clientes incluem pace um quarto dos clientes não	ediana, do 3.º quartil e do máxi escolheria para avaliar a dispers noda. (a) de clientes que tomam o pequen eite no seu pedido; o e leite no seu pedido;	mo. são d (B) (D) o ala oedic do?	los dados? O mínimo e o A mediana. moço numa par	o má:	ximo.

4. Considere um grafo completo, com n vértices.

Qual das afirmações define o grafo?

8. Considere uma experiência aleatória, com espaço de resultados Ω finito e dois acontecimentos $A \subset \Omega$ e $B \subset \Omega$, associados a essa experiência.

Sabe-se que P(A) = 0, 3, P(B) = 0, 4 e $P(A \cup B) = 0, 5$, onde P designa a probabilidade.

Qual é a probabilidade de se realizar A, sabendo que B se realiza?

 $(A) \frac{1}{6}.$

(B) $\frac{1}{4}$.

(C) $\frac{1}{3}$.

(**D**) $\frac{1}{2}$.

9. Considere que durante um processo eleitoral concorreram três listas.

Sabe-se que:

- a lista A obteve 458 votos;
- a lista B obteve 171 votos;
- a lista C obteve 542 votos;
- o número de mandatos é 6.

Qual é o número de mandatos de cada uma das listas usando o método d'Hondt?

- (A) A lista A tem 2 mandatos, a lista B tem 1 mandato e a lista C tem 3 mandatos.
- (B) A lista A tem 3 mandatos, a lista B tem 0 mandato e a lista C tem 3 mandatos.
- (C) A lista A tem 1 mandato, a lista B tem 1 mandato e a lista C tem 4 mandatos.
- (D) A lista A tem 2 mandatos, a lista B tem 2 mandatos e a lista C tem 2 mandatos.
- 10. Considere que numa caixa estão três cartões numerados de 1 a 3.

Extraem-se, ao acaso e em simultâneo, dois cartões da caixa.

Sabe-se que X é o maior dos números saídos.

Qual é a distribuição de probabilidades da variável aleatória X?

(B)	x_i	1	2	3
(D)	$P(X=x_i)$	1/3	1/3	1/3

(**D**)
$$x_i$$
 1 2 3 $P(X = x_i)$ $1/3$ $1/6$ $1/2$

Grupo II

- Nas questões deste grupo apresente o seu raciocínio de maneira clara, indicando todos os cálculos que efetuar e todas as justificações necessárias.
- Pode recorrer à sua máquina de calcular para efetuar cálculos e obter representações gráficas de funções.
- Atenção: em valores aproximados, realize arredondamentos com 4 casas decimais.
- 1. Considere os valores da tabela, os quais indicam o peso (em grama) de cada uma de 30 castanhas, escolhidas aleatoriamente, entre as produzidas num determinado souto.

- 1															4,8
	4,8	6, 4	4,8	2,0	7,5	5, 2	4, 8	6,0	4,5	0, 9	5,6	2,3	4, 1	6, 4	5,9

- (a) Determine um intervalo de confiança para peso média populacional das castanhas, com um nível de confiança de 99%.
- (b) Calcule uma estimativa pontual para a proporção de castanhas com peso inferior a 2,5 gramas.

2. A escala térmica usada em Inglaterra é a escala Fahrenheit. Quando a água gela, os termómetros ingleses marcam 32 $^o\mathrm{F}$ e quando a água ferve marcam 212 $^o\mathrm{F}$.

A relação entre grau Celsius C (°C) e grau Fahrenheit F (°F) pode ser definida por,

$$\frac{F-32}{9} = \frac{C}{5}.$$

- (a) Determine uma expressão designatória da relação dada, resolvida em ordem à variável ${\cal F}.$
- (b) Indique, justificando, a quantos graus Celsius correspondem 32 $^o\mathrm{F?}$
- (c) Copie e complete a tabela, usando valores aproximados às centésimas.

Temperatura em grau Fahrenheit (°F)	10		50		100
Temperatura em grau Celsius (°C)		25		37	

3. Uma fábrica utiliza as máquinas A, B e C, no fabrico de um determinado tipo de peças.

As máquinas $B \in C$ produzem o mesmo número de peças e a máquina A produz o dobro das peças, no mesmo tempo.

Durante a produção das peças ocorrem erros que provocam a produção de peças defeituosas.

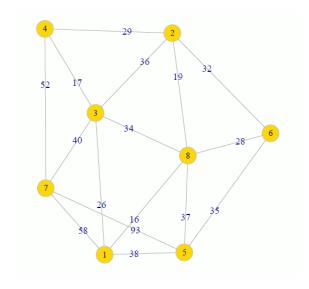
Suponha que 2% das peças produzidas tanto pela máquina A, como pela B e que 4% das peças produzidas pela máquina C, são defeituosas.

Retirou-se ao acaso uma peça do conjunto das que foram produzidas por aquelas máquinas.

- (a) Qual a probabilidade da peça ser defeituosa?
- (b) Sabendo que a peça é defeituosa, qual a probabilidade de ter sido produzida pela máquina A?
- 4. Considere um triângulo isósceles (triângulo com dois lados iguais). Sabe-se que:
 - o perímetro (soma de todos os lados) do triângulo é de 22 unidades de medida;
 - cada um dos lados iguais, excede em 4 unidades de medida, o triplo do comprimento do lado desigual.

Pretendemos calcular o comprimento de cada um dos lados do triângulo.

Escreva um sistema de duas equações do $1.^{o}$ grau que traduza este problema, representando por x o comprimento de cada um dos lados iguais e por y o comprimento do lado desigual.


5. Durante o ano letivo 2019/2020, os estudantes inscritos no curso de Matemática Aplicada às Ciências Sociais tiveram que realizar dois trabalhos escritos e dois testes de avaliação.

A tabela apresenta os resultados parciais obtidos por cinco desses estudantes.

1.º Trabalho	1.º Teste	2.º Trabalho	2.º Teste
10,3	14, 1	15, 3	9, 6
7,7	10, 3	12,4	7,8
12,4	14,0	17, 1	14, 5
10,4	16, 1	17,3	10, 1
16, 2	8, 2	10, 2	12, 6

Sabe-se que:

- os trabalhos escritos têm o mesmo peso e valem 4 valores (em 20) da média final;
- \bullet o 1.º teste de avaliação tem um peso de 40% nos 16 valores da média final.
- (a) Determine a média ponderada de cada um dos cinco estudantes.
- (b) Considere os resultados de cada um dos testes de avaliação.
 - i. Determine a média aritmética e o desvio padrão, em cada um dos testes.
 - ii. Indique, justificando, em qual dos testes de avaliação os resultados obtidos são mais dispersos.
- 6. Considere o grafo representado na figura.

Sabe-se que sobre cada aresta está o custo de transporte de um determinado produto entre os vértices que ligam essa aresta.

- (a) Indique, justificando, se o grafo é um grafo hamiltoniano.
- (b) Indique, justificando, se existe algum circuito euleriano no grafo.
- (c) Dê um exemplo de uma árvore geradora do grafo e calcule o seu custo.
- (d) Determine a árvore geradora de custo mínimo, começando por explicar o funcionamento do algoritmo utilizado para obter essa árvore.

FIM da Prova de Avaliação

FORMULÁRIO

Probabilidades

Consideremos uma experiência aleatória e_h , com universo Ω e os acontecimentos A,

$$B, A_1, A_2, ..., A_n \in E \text{ tais que:} \qquad P(E) \neq 0, \qquad A_1 \cup A_2 \cup ... \cup A_n = \Omega$$

$$A_i \cap A_j = \varnothing, \forall i, j = 1, 2, ..., n : i \neq j.$$

Então:

$$\Diamond \quad P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\Diamond \quad P(A|E) = \frac{P(A \cap E)}{P(E)}$$

$$\Diamond P(E) = P(E \cap A_1) + P(E \cap A_2) + ... + P(E \cap A_n)$$

$$\Diamond P(A_i|E) = \frac{P(E|A_i) P(A_i)}{P(E|A_1) P(A_1) + P(E|A_2) P(A_2) + \dots + P(E|A_n) P(A_n)}$$

Estatística Descritiva

Modalidades	Frequência Absoluta Ordinária	Frequência Relativa Ordinária	Frequência Absoluta Acumulada	Frequência Relativa Acumulada
x_1	n_1	f_1	N_1	F_1
x_2	n_2	f_2	N_2	F_2
:	:	: :	:	:
x_i	n_i	f_i	$N_i = \sum_{j=1}^i n_j$	$F_i = \sum_{j=1}^i f_j$
:	:	: :	:	:
x_p	n_p	$f_{\mathcal{P}}$	$N_p = n$	$F_p = 1$

$$\Diamond \quad \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{p} n_i x_i}{n} = \sum_{i=1}^{p} f_i x_i$$

Intervalo de confiança para o valor médio μ de uma variável normal X, admitindo que se conhece o desvio padrão da variável.

al
$$X$$
, admitindo que se de uma variável normal X , admitindo que se desconhece o desvio padrão da variável e que a amostra tem dimensão superior ou igual a 30.

$$\left] \overline{x} - z \frac{\sigma}{\sqrt{n}}, \overline{x} + z \frac{\sigma}{\sqrt{n}} \right[$$

n – dimensão da amostra

 \overline{x} – média amostral

 σ – desvio padrão da variável

z – valor relacionado com o nível de confiança (*)

$$\left] \overline{x} - z \frac{s}{\sqrt{n}}, \overline{x} + z \frac{s}{\sqrt{n}} \right[$$

n – dimensão da amostra

Intervalo de confiança para o valor médio μ

 \overline{x} – média amostral

s – desvio padrão amostral

z – valor relacionado com o nível de confiança (*)

Intervalo de confiança para uma proporção p admitindo que a amostra tem dimensão superior ou igual a 30.

$$\widehat{\widehat{p}} - z\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}, \widehat{p} + z\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$$

n – dimensão da amostra

 \widehat{p} – proporção amostral

z – valor relacionado com o nível de confiança (*)

 $(\sp*)$ Valores de z para os níveis de confiança mais usuais.

Nível de confiança	90%	95%	99%
z	1,645	1,960	2,576

	Cada	resposta errada, anulada ou não respondida	0	
aru	po I	I		
1.	-			20
	(a)		10	
	(b)		10	
2.				
	(a)		6	20
	(b)		4	
	(c)		10	
3.				20
	(a)		10	
	(b)		10	
4.				15
5.				25
	(a)		10	
	(b)		15	
		i	10	
		ii	5	
6.				30
	(a)		5	
	(b)		5	
	(c)		10	
	(d)		10	